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Abstract

We propose a fast and learnable version of the measurement-
conditioned denoising diffusion probabilistic model, MC-DDPM [Yutong
et al. 2022], for under-sampled medical image reconstruction based on
DDPM. This work can be considered as a novel extension of the MC-
DDPM. MC-DDPM is defined in measurement domain (e.g. k-space in
MRI reconstruction) and conditioned on under-sampling mask. We apply
this method to accelerate MRI reconstruction and the experimental re-
sults show excellent performance, outperforming full supervision baseline
and the state-of-the-art score-based reconstruction method, and achive
the performance of MCDDPM with around 200 steps by replacing the
DDPM module of MC-DDPM with fast-DPM architecture proposed in
[Zhifeng et al. 2021]. In addition to faster sampling speed, another con-
tribution of this project is the learning of noise schedule which has been
kept constant in the MC-DDPM paper. This improvement is adapated
from the Variational Diffusion Model (VDM) proposed in [Kingma et al.
2021]. We show that our results are comparable and in some cases better
than the MC-DDPM paper for the PD and PDFs knee single coil MRI
data from the fastMRI dataset [Zbontar et al. 2018]. However, due to
lack of compute, the experiments have been conducted on just 1 volume
of pd4x, pd8x, pdfs4x, and pdfs8x. The evaluation metrics are kept same
as the MC-DDPM paper : PSNR and SSIM, however, we report results
for only 1 volume compared to the results for 6 randomly selected volumes
used for testing in the MC-DDPM paper.

1 Introduction
The problem of reconstruction from the under-sampled medical imaging data
including magnetic resonance imaging (MRI) has been studied in depth over
many years. [Aggarwal et al. 2018, Hammernik et al., 2018, Eo et al., 2018,
Han et al., 2019], sparse view or limited angles computed tomography (CT)
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[Han and Ye. 2018, Zhang et al., 2019. WWang et al., 2019] and digital breast
tomosynthesis (DBT). Most of works aim to obtain one sample of the posterior
distribution p(x | y) where x is the reconstructed target image and y is the
under-sampled measurements.

Diffusion probabilistic models are a class of deep generative models that
use Markov chains to gradually transform between a simple distribution (e.g.,
isotropic Gaussian) and the complex data distribution [Sohl-Dickstein et al.,
2015; Ho et al., 2020]. Most recently, these models have obtained the state-of-
the-art results in several important domains, including image synthesis [Ho et
al., 2020; Song et al., 2020b; Dhariwal and Nichol, 2021], audio synthesis [Kong
et al., 2020b; Chen et al., 2020], and 3-D point cloud generation [Luo and Hu,
2021; Zhou et al., 2021]. They have demonstrated superior performance and
have been widely used in various image processing tasks DDPM utilizes a la-
tent variable model to reverse a diffusion process, where the data distribution is
perturbed to the noise distribution by gradually adding Gaussian noise. Similar
to DDPM, score-based generative models [Hyvärinen and Dayan, 2005, Song
and Ermon, 2019] also generate data samples by reversing a diffusion process.
Both DDPM and score-based models are proved to be discretizations of different
continuous stochastic differential equations by [Song et al. 2020]. The differ-
ence between them lies in the specific setting of diffusion process and sampling
algorithms. They have been applied to the
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Figure 1: MC-DDPM approach illustrated by the example of under-sampled
MRI reconstruction. Diffusion process: starting from the non-sampled k-space
yMc,0, Gaussian noise is gradually added until time T . Reverse process: starting
from total noise, yMc,0 is generated step by step. The details of notations is
presented in Sect. 3

generation of image [Song et al. 2020, Nichol and Dhariwal, 2021, Dhariwal
and Nichol, 2021], audio [Kong et al., 2020] or graph [Niu et al., [2020], and
to conditional generation tasks such as in in-painting |Song and Ermon, 2019||
Song et al., 2020], super-resolution [Choi et al., 2021, Saharia et al. 2021| and
image editing |Meng et al.. 2021|. In these applications, the diffusion process
of DDPM or score-based generative model is defined in data domain, and is
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unconditioned although the reverse process could be conditioned given certain
downstream task. Particularly, the score-based generative model has been used
for under-sampled medical image reconstruction [Jalal et al., 2021 . Song et al.,
2021. Chung et al. 2021], where the diffusion process is defined in the domain
of image x and is irrelevant to under-sampled measurements y.

In this projetct, we attempt to explore the diffusion models efficacy in un-
dersampled MR reconstruction. In particular our study is based on the (MC-
DDPM) Measured Conditioned Denoising Diffusion Probabilitic Model pro-
posed in [Yutong et al. 2022]. The details about the MC-DDPM method
are discussed in Sect. 3 and 4. The MC-DDPM paper adopted the DDPM
model rather than score-based generative model because DDPM is more flexi-
ble to control the noise distribution. In this study, we made enromous efforts
to reproduce the results of the MC-DDPM paper and in addition , we propose
two variations of the MC-DDPM architecture, namely FAST MCD-PPM and
VAR MC-DDPM. The FAST MC-DDPM method is introduced to speed up the
traditional DDPM model by taking inspiration from the Denoising DiffusioN
Implicit Model proposed by [Song et al., 2021]. We demonstrate that FAST
MC-DDPM can achieve almost similar performance as that of the MC-DDPM
with just 200 steps. However, it should be noted, that due to lack of compute,
the comparison has been done on a single volume as opposed to 6 volumes tested
in the MC-DDPM paper. So, we leave the comprehensive evaluation to ensure
that the proposed variations are indeed useful to the scientific community, as
future work.VAR MC-DDPM is another proposed variation of the MC-DDPM
method. Here, instead of the constant noise schedule used in the MC-DDPM
paper, the noise schedule is learned. This modification in the MC-DDPM ar-
chitecture is adapted by the VDM model proposed in [Karras et al., 2022]. The
details of FAST MC-DDPM and VAR MC-DDPM are discussed in the Back-
ground section : Sect. 2. The measurement-conditioned DDPM (MC-DDPM)
for under-sampled medical image reconstruction is based on DDPM (Fig 1 il-
lustrates the method by the example of under-sampled MRI reconstruction),
where the under-sampling is in the measurement space (e.g. k-space in MRI
reconstruction) and thus the conditional diffusion process is also defined in the
measurement sapce. In MC-DDPM, the diffusion and sampling process are
defined in measurement domain rather than image domain; and the diffusion
process is conditioned on under-sampling mask so that data consistency is con-
tained in the model naturally and inherently, and there is no need to execute
extra data consistency when sampling. Thus MC-DDPM model can be used
to sample multiple reconstruction results from the same measurements y. This
is useful for the uncertainity quanitfication for q(x | y), such as pixel-variance.
Our experiments on the the accelerated MRI reconstruction show that FAST
MC-DDPM can achieve comparable results to that of MC-DDPM with much
less no of steps (200), compared to 1000 in the original paper. In addition, the
VAR MC-DDPM variant does show improvemnt over the MC-DDPM, which
indicates that noise schedule is an important hyperparameter which was not
paid much attention in the MC-DDPM paper. We also compare the results
with U-NET. Our evaluation is based on single volume average metrics : Peak
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Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and
Normalized Mean Squared Error (NMSE).

This project is organized as follows: relevant background on DDPM, DDIM (
Denoising Diffusion Implicit Models), and VDM (Variational Diffusion Model),
and the under-sampled medical image reconstruction task is in Sect. 2, details of
the competing method: MC-DDPM is presented in Sect. 3, specifications about
the reproduction of the MCDDPM paper are given in Sect. 4, FAST MC-
DDPM and VAR MC-DDPM are discussed in Sect. 5, and finally the results of
the two proposed improvements: FAST MC-DDPM and VAR MC-DDPM are
shown compared to the Zero Filled, MC-DDPM reconstruction, and U-NET,
for a single volume of the pd4x, pd8x, pdfs4x and pdfs8x data obtained from
the fastMRI dataset, are presented in Sect. 6. The conclusion and future steps
are presented in Sect. 7.

2 Background

2.1 Denoising Diffusion Probabilistic Model
DDPM [Ho et al. 2020] is a certain parameterization of diffusion models [Sohl-
Dickstein et al. 2015], which is a class of latent variable models using a Markov
chain to convert the noise distribution to the data distribution. It has the form
of pθ (x0) :=

∫
pθ (x0:T ) dx1:T , where x0 follows the data distribution q (x0) and

x1, . . . ,xT are latent variables of the same dimensionality as x0. The joint distri-
bution pθ (x0:T ) is defined as a Markov chain with learned Gaussian transitions
starting from p (xT ) = N (0, I)

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1 | xt) , pθ (xt−1 | xt) := N
(
µθ (xt, t) , σ

2
t I
)
.

The sampling process of pθ (x0) is: to sample xT from N (0, I) firstly; then,
to sample xt−1 from pθ (xt−1 | xt) until x0 is obtained. It can be regarded as
a reverse process of the diffusion process, which converts the data distribution
to the noise distribution N (0, I). In DDPM the diffusion process is fixed to a
Markov chain that gradually adds Gaussian noise to the data according to a
variance schedule β1, . . . , βT :

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) , q (xt | xt−1) := N
(
αtxt−1, β

2
t I
)
,

where α2
t + β2

t = 1 for all t and β1, . . . , βT are fixed to constants and their
value are set specially so that q (xT | x0) ≈ N (0, I).
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2.2 Under-sampled Medical Image Reconstruction
Suppose x ∈ Rn represents a medical image and y ∈ Rm,m < n is the under-
sampled measurements which is obtained by the following forward model:

y = PΩAx+ ϵ,

where A ∈ Rn×n is the measuring matrix and usually is invertible, PΩ ∈
Rm×n is the undersampling matrix with the given sampling pattern ΩL2 and ϵ is
the noise. For example, x is a CT image, A is the Radon transform matrix and y
is the sinogram of limited angles. Under-sampled medical image reconstruction
is to reconstruct x from y as possible. Assuming x follows a distribution of
q(x) and given PΩ, according to Bayesian Formula, we can derive the posterior
distribution as follows (usually PΩ is neglected):

q (x | y,PΩ) =
q (x,y | PΩ)

q(y)
=

q (y | x,PΩ) q(x)

q(y)
.

Therefore, the task of under-sampled medical image reconstruction to recon-
struct the posterior distribution.

2.3 Denoising Diffusion Implicit Models
Diffusion models usually comprise: i ) a parameter-free T -step Markov chain
named the diffusion process, which gradually adds random noise into the data,
and ii ) a parameterized T -step Markov chain called the reverse or denoising
process, which removes the added noise as a denoising function. The likelihood
in diffusion models is intractable, but they can be efficiently trained by opti-
mizing a variant of the variational lower bound. In particular, [Ho et al. 2020]
propose a certain parameterization called the denoising diffusion probabilistic
model (DDPM) and show its connection with denoising score matching [Song
and Ermon, 2019], so the reverse process can be viewed as sampling from a
scorebased model using Langevin dynamics. DDPM can produce high-fidelity
samples reliably with large model capacity and outperforms the state-of-the-
art models in image and audio domains [Dhariwal and Nichol, 2021; Kong et
al., 2020b]. However, a noticeable limitation of diffusion models is their ex-
pensive denoising or sampling process. For example, DDPM requires a Markov
chain with T = 1000 steps to generate high quality image samples [Ho et al.,
2020], and DiffWave requires T = 200 to obtain high-fidelity audio synthesis
[Kong et al., 2020b]. In other words, one has to run the forward-pass of the
neural network T times to generate a sample, which is much slower than the
state-of-the-art GANs or flow-based models for image and audio synthesis [e.g.,
Karras et al., 2020; Kingma and Dhariwal, 2018; Kong et al., 2020a; Ping et
al., 2020]. The authors of [Song et al., 2022] highlighted a critical drawback
of the DDPM models, stating that they require many iterations to produce a
high quality sample. For DDPMs, this is because that the generative process
(from noise to data) approximates the reverse of the forward diffusion process
(from data to noise), which could have thousands of steps; iterating over all the
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steps is required to produce a single sample, which is much slower compared
to GANs, which only needs one pass through a network. [Song et al., 2021]
demonstrated that it takes around 20 hours to sample 50k images of size 32×32
from a DDPM, but less than a minute to do so from a GAN on a Nvidia 2080 Ti
GPU. This becomes more problematic for larger images as sampling 50k images
of size 256× 256 could take nearly 1000 hours on the same GPU.

To overcome this limitation of the DDPM’s and to reduce the computational
gap between the DDPM and GANS, the denoising diffusion implicit models
(DDIMs) were proposed by [Song et al. 2021]. DDIMs are implicit probabilis-
tic models [Mohamed & Lakshminarayanan, 2016] and are closely related to
DDPMs, in the sense that they are trained with the same objective function.

Figure 2: Graphical models for diffusion (left) and non-Markovian (right)
inference models.

Given samples from a data distribution q (x0), we are interested in learning a
model distribution pθ (x0) that approximates q (x0) and is easy to sample from.
Denoising diffusion probabilistic models (DDPMs, Sohl-Dickstein et al. (2015);
Ho et al. (2020)) are latent variable models of the form

pθ (x0) =

∫
pθ (x0:T ) dx1:T , where pθ (x0:T ) := pθ (xT )

T∏
t=1

p
(t)
θ (xt−1 | xt)

where x1, . . . ,xT are latent variables in the same sample space as x0 (de-
noted as X ). The parameters θ are learned to fit the data distribution q (x0)
by maximizing a variational lower bound:

max
θ

Eq(x0) [log pθ (x0)] ≤ max
θ

Eq(x0,x1,...,xT ) [log pθ (x0:T )− log q (x1:T | x0)]

where q (x1:T | x0) is some inference distribution over the latent variables.
Unlike typical latent variable models (such as the variational autoencoder (Rezende
et al., 2014)), DDPMs are learned with a fixed (rather than trainable) inference
procedure q (x1:T | x0), and latent variables are relatively high dimensional. For
example, Ho et al. (2020) considered the following Markov chain with Gaussian
transitions parameterized by a decreasing sequence α1:T ∈ (0, 1]T :

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) , where q (xt | xt−1) := N
(√

αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
where the covariance matrix is ensured to have positive terms on its diagonal.

This is called the forward process due to the autoregressive nature of the sam-
pling procedure (from x0 to xT ). We call the latent variable model pθ (x0:T ),
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which is a Markov chain that samples from xT to x0, the generative process,
since it approximates the intractable reverse process q (xt−1 | xt). Intuitively,
the forward process progressively adds noise to the observation x0, whereas the
generative process progressively denoises a noisy observation (Figure 1, left).

A special property of the forward process is that

q (xt | x0) :=

∫
q (x1:t | x0) dx1:(t−1) = N (xt;

√
αtx0, (1− αt) I)

so we can express xt as a linear combination of x0 and a noise variable ϵ :

xt =
√
αtx0 +

√
1− αtϵ, where ϵ ∼ N (0, I).

When we set αT sufficiently close to 0, q (xT | x0) converges to a standard
Gaussian for all x0, so it is natural to set pθ (xT ) := N (0, I). If all the con-
ditionals are modeled as Gaussians with trainable mean functions and fixed
variances, the objective in Eq. (2) can be simplified to :

Lγ (ϵθ) :=

T∑
t=1

γtEx0∼q(x0),ϵt∼N (0,I)

[∥∥∥ϵ(t)θ

(√
αtx0 +

√
1− αtϵt

)
− ϵt

∥∥∥2
2

]

where ϵθ :=
{
ϵ
(t)
θ

}T

t=1
is a set of T functions, each ϵ

(t)
θ : X → X (indexed

by t ) is a function with trainable parameters θ(t), and γ := [γ1, . . . , γT ] is a
vector of positive coefficients in the objective that depends on α1:T . In Ho et
al. (2020), the objective with γ = 1 is optimized instead to maximize genera-
tion performance of the trained model; this is also the same objective used in
noise conditional score networks [Song & Ermon, 2019] based on score matching
[Hyvärinen, 2005; Vincent, 2011]. From a trained model, x0 is sampled by first
sampling xT from the prior pθ (xT ), and then sampling xt−1 from the generative
processes iteratively.

The length T of the forward process is an important hyperparameter in
DDPMs. From a variational perspective, a large T allows the reverse process
to be close to a Gaussian [Sohl-Dickstein et al., 2015], so that the generative
process modeled with Gaussian conditional distributions becomes a good ap-
proximation; this motivates the choice of large T values, such as T = 1000 in
Ho et al. (2020). However, as all T iterations have to be performed sequentially,
instead of in parallel, to obtain a sample x0, sampling from DDPMs is much
slower than sampling from other deep generative models, which makes them
impractical for tasks where compute is limited and latency is critical.

In a nutshell, DDIM proposes a change to the recently popular diffusion
models, motivated by increasing the speed of sampling. This is accomplished
by changing the “forward” process which adds noise to the data. In the original
diffusion models, this forward process is a Markov process whose marginals and
conditionals can be computed efficiently in closed form. This paper proposes to
replace this Markov forward process with a non-markovian process that is de-
signed to have the same marginals. The generative model, in this case, changes
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such that to predict the next step in the process, the model must first predict
the “clean” sample at the end of the chain which is then used to give an esti-
mate for the next step in the chain. Intriguingly, the objective for training this
new generative model is identical to training a standard diffusion model. Thus,
the models differ only at sampling time. Under the new interpretation, we can
sample from a family of models after training. This family can be tuned to
increase the speed of sampling, at the cost of some sample quality.For, details,
the DDIM paper, [Song et al., 2021] can be referred.

2.4 Variational Diffusion Model
The paper by [Karras et al., 2021] presents a novel perspective on denoising
diffusion models. The main contributions of their work includes a (i) new for-
mulation of ELBO using SNR(t) and showing invariance to the noise schedule
under this formulation, (ii) training noise schedule, and (iii) several new architec-
ture improvements. The uthors show that the proposed method’s : Variational
Diffusion Model’s discrete-time versions include previous finite-length Markov
chain models as special cases. The paper then demonstrates that the ELBOs
of the proposed continuous-time models exist. In here, the resulting ELBOs
include an integration (wrt time) of a reconstruction loss weighted by the time-
derivative of . Based on this, the paper shows that the losses of the previous
continuous-time diffusion-based models follow the same integration form but
with different weighting functions.The authors also paper present interesting
properties of the proposed method due to SNR(t) . In particular, remind that
is invertible because of its monotonicity, and the continuous-time loss’s inte-
gration contains the time-derivative of SNR(t) . The paper shows that the
integral can be re-written wrt SNR(t) ’s output by change-of-variable. In this
form, the integral only depends on the range of the integration but doesn’t de-
pend on the shape of SNR(t) within the range. As a result, acknowledging the
invariant of the loss on the ’s output space, the paper proposes to parameterize
the score models conditioning on log-scaled SNR(t) instead of SNR(t) .The
paper proposes to train for the discrete and continuous-time models. For the
monotonicity, is defined as a monotonic network wrt . For discrete-time models,
the paper proposes to train networks by maximizing the ELBO together with
the diffusion models. For continuous-time models, is trained by minimizing the
variance of the Monte-Carlo estimation of the continuous-time ELBOs.

3 Competing Method:Measurement-conditioned
DDPM

We base our improvements, tasking MC-DDPM as the baseline. Thus, it is
important to understand the nuts and bolts of MC-DDPM. [Yutong et al., 2022]
proposed measurement-conditioned DDPM (MC-DDPM) which is designed for
under-sampled medical image reconstruction. In this section, the formulate of
MC-DDPM, is discussed, including the diffusion process and its reverse process,
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training objective and sampling algorithm. The under-sampled forward model
can be represented as:

yM = MAx + ϵM,

where M ∈ Rn×n is a diagonal matrix whose diagonal elements are either 1
or 0 depending on the sampling pattern Ω$3yM and ϵM are both n-dimension
vectors and their components at nonsampled positions are 0 . The merit of
the new notations is that we can further define Mc = I − M (the superscript
c means complement) and yMc = McAx which represents the non-sampled
measurements. In this paper, we assume ϵM = 0. Then, we have yM + yMc =
Ax, i.e. yM+yMc is the full-sampled measurements. In addition, the posterior
distribution of reconstruction can be rewritten as q (x | M,yM). Through this
paper, the subscript M or Mc in notations indicates that only components at
under-sampled or non-sampled positions are not 0 .

The purpose of reconstruction task is to estimate q (x | M,yM). Since yM

is known and x = A−1 (yM + yMc), the problem is transformed to estimate
q (yMc | M,yM). Because M and Mc are equivalent as the condition, we can re-
place q (yMc | M,yM) by q (yMc | Mc,yM). Based on this observation, we pro-
pose MC-DDPM which solves the reconstruction problem by generating samples
of q (yMc | Mc,yM). MC-DDPM is defined in measurement domain, instead of
image domain as usual DDPM, and is conditioned on the non-sampling matrix
Mc and sampled measurements yM. It has the following form:

pθ (yMc,0 | Mc,yM) :=

∫
pθ (yMc,0:T | Mc,yM) dyMc,1:T ,

where yMc,0 = yMc .pθ (yMc,0:T | Mc,yM) is defined as follows:

pθ (yMc,0:T | Mc,yM) := p (yMc,T | Mc,yM)
∏T

t=1 pθ (yMc,t−1 | yMc,t,M
c,yM) ,

pθ (yMc,t−1 | yMc,t,M
c,yM) := N

(
µθ (yMc,t, t,M

c,yM) , σ2
tM

c
)
,

where σ2
tM

c is the covariance matrix and it means the noise is only added
at non-sampled positions because for all t the components of yMc,t at under-
sampled positions are always 0 . If the conditions (Mc,yM) in equations above
is removed, they degrade to the form of Eq. 1.

Similar to DDPM, the sampling process of pθ (yMc,0 | Mc,yM) is a reverse
process of the diffusion process which is also defined in measurement domain.
Specifically, the Gaussian noise is gradually added to the non-sampled measure-
ments yMc,0. The diffusion process has the following form:

q (yMc,1:T | yMc,0,M
c,yM) :=

∏T
t=1 q (yMc,t | yMc,t−1,M

c,yM) ,
q (yMc,t | yMc,t−1,M

c,yM) := N
(
αtyMc,t−1, β

2
tM

c
)
,

There are two points worthy of noting: (1) αt, βt are not restricted to satisfy
α2
t + β2

t = 1; (2) formally, we add yM as one of the conditions, but it has no
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effect on the diffusion process in fact. Let ᾱt =
∏t

i=i αi, β̄
2
t =

∑t
i=1

ᾱ2
t

ᾱ2
i
β2
i , and

we additionally define ᾱ0 = 1, β̄0 = 0. Then, we can derive that:

q (yMc,t | yMc,0,M
c,yM) = N

(
ᾱtyMc,0, β̄

2
tM

c
)
,

q (yMc,t−1 | yMc,t,yMc,0,M,yM) = N
(
µ̃t, β̃

2
tM

c
)
,

where µ̃t =
αtβ̄

2
t−1

β̄2
t

yMc,t +
ᾱt−1β

2
t

β̄2
t

yMc,0, β̃t = βtβ̄t−1

βt
. In MC-DDPM, we

assume that αt is set specially so that ᾱT ≈ 0, i.e. q (yMc,T | yMc,0) ≈
N

(
0, β̄2

TM
c
)

is a noise distribution independent of yMc,0.
Next, we discuss how to train MC-DDPM pθ (yMc,0 | Mc,yM). Firstly, let

p (yMc,T | Mc,yM) =N
(
0, β̄2

TM
c
)

so that it is nearly equal to q (yMc,T | yMc,0).
Training of pθ (yMc,0 | Mc,yM) is performed by optimizing the variational bound
on negative log likelihood:

E [− log pθ (yMc,0 | Mc,yM)] ≤ Eq

[
− log

pθ (yMc,0:T | Mc,yM)

q (yMc,1:T | yMc,0,Mc,yM)

]

=Eq

− log p (yMc,T | Mc,yM)−
∑
t≥1

log
pθ (yMc,t−1 | yMc,t,M

c,yM)

q (yMc,t | yMc,t−1,Mc,yM)

 =: L.

Assuming that

µθ (yMc,t, t,M
c,yM) =

1

αt

(
yMc,t −

β2
t

β̄t
εθ (yMc,t, t,M

c,yM)

)
,

and supposing yMc,t = ᾱtyMc,0+ε, ε ∼ N
(
0, β̄2

tM
c
)

(Eq. 8, after reweight-
ing L can be simplified as follows:

Lsimple = Eyc
M,0,t,ε

∥∥ε− εθ
(
ᾱty

c
M,0 + β̄tε, t,M

c,yM

)∥∥2
2
, ε ∼ N (0,Mc) ,
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where t is uniform between 1 and T .
Algorithm 1:Training displays the complete training procedure of the Denois-

ing Diffusion Probabilistic Models with this simplified objective and Algorithm
2:Sampling shows the sampling process of the Denoising Diffusion Probabilistic
Models.

Algorithm 1: MC-DDPM training displays the complete training procedure
of MC-DDPM with this simplified objective and Algorithm 2:MC-DDPM Sam-
pling shows the sampling process.

Since MC-DDPM can produce multiple samples of the posterior distribution
q (x | yM,M), the pixel-variance can be computed by Monte Carlo approach
which is used to quantify uncertainty of reconstruction.

4 MC-DDPM Experiments
We apply MC-DDPPM to accelerated MRI reconstruction where A is 2 d Fourier
transform and yM is the under-sampled k-space data. The specific design for
εθ (yMc,t, t,M

c,yM) in our experiments is given as follows:

εθ (yMc,t, t,M
c,yM) = Mcf

(
g
(
A−1 (yMc,t + yM ) ,A−1yM

)
, t; θ

)
,

where f is a deep neural network and g(·, ·) is the concatenation operation.
Because MR image x is in complex filed, we use |x|, the magnitude of it, as the
final image. Pixel-wise variance is also computed using magnitude images.

5 Proposed Methods: FAST MC-DDPM & VAR
MC-DDPM

5.1 FAST MC-DDPM
We repalce the DDPM with DDIM model in the MC-DDPM architecture.
Denoising diffusion probabilistic models (DDPMs) have achieved high qual-
ity image generation without adversarial training, yet they require simulating
a Markov chain for many steps to produce a sample.To accelerate sampling,
DDIM model has been proposed by [Song et al. 2021] which is a more efficient
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class of iterative implicit probabilistic models with the same training procedure
as DDPMs, as discussed in Sect. 2. DDIM constructs a class of non-Markovian
diffusion processes that lead to the same training objective, but whose reverse
process can be much faster to sample from. Thus, faster sampling has motivates
us to replace the DDPM with DDIM for sampling in the MC-DDPM stage.

5.2 VAR MC-DDPM
In this variant of MC-DDPM, we replace the DDPM with Variational Diffu-
sion Model so that the noise schedule can be learned instead of the fixed noise
schedule used in the MC-DDPM paper. The details regarding the Variational
Diffusion Model are outlined in Sect 2., and can also be referred from Karras et
al., 2022

6 Experimental Setting
All experiments are performed with fastMRI single-coil knee dataset [Zbontar
et al. 2018], which is publicly available 4 and is divided into two parts, proton-
density with (PDFS) and without fat suppression (PD). We trained the network
with k-space data which were computed from 320×320 size complex images. In
order to reproduce the results of MC-DDPM, the same experimental procedure
has been adopted, using the guided-DDPM [Dhariwal and Nichol, 2021] and
aand the diffusion process in [Dhariwal and Nichol [2021] but multiply βt by
0.5 so that β̄T ≈ 0.5. All networks were trained with learning rate of 0.0001
using AdamW optimizer. We were able to reproduce the results of the MC-
DDPM paper, however, for the scope of the project and due to the compute
and storage limiations, we compare the proposed variations of the MC-DDPM
- FAST MC-DDPM and VAR MC-DDPM on a single volume. We also show
comparison with Zero Filled and U-Net architecture used in the MC-DDPM
paper, to keep consistent settings. For all volumes of training data, we drop
the first and last five slices to avoid training the model with noise-only data as
[Chung et al. [2021] did. For testing, we randomly select single volume from
the validation set and dropped the first and last 5 slices from each volume for
both PD and PDFS. The model architectures used in experiments stems from
U-Net [Ronneberger et al., 2015] and is added by time embedding modules and
self-attention layers.The model is trained with batch size of 48 for 35k steps as
in MC-DDPM experiments. To reproduce the exact pipeline of MC-DDPM, the
same settings are used : about αt and βt, the "cosine" scheduled which is used
similar to that in [Dhariwal and Nichol [2021], and then multiplied the βt by
0.5. All code has been implemented in PyTorch.

To verify superiority, we perform comparison studies with baseline methods
(U-Net [Ronneberger et al. 2015]) used in [Zbontar et al. 2018]. The evalua-
tion metrics, peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM), of score-based reconstruction method proposed in [Chung et al. 2021]
are also used for comparisor 5 since their experiments are conducted on the
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same dataset.

6.1 Experimental Results
We show the results of PD with 4× (the first row) and 8× (the second row)
acceleration in Fig. 2. We compare our method to zero-filled reconstruction
(ZF), U-Net. and MC-DDPM. Since MC-DDPM can produce multiple recon-
struction samples, we use the mean of 20 samples as the object for comparison.
We observe that that the proposed method - FAST MC-DDPM attains compa-
rable performance to that of MC-DDPM with much fewer steps (around 200) ,
compared to 1000 used in the MC-DDPM paper. We also observe that the Vari-
ational MC-DDPM outperforms the MC-DDPM on all experiemntal settings.
Moreover, we are able to reproduce the trend demonstrated in the MC-DDPM
paper where they show that their method outperforms U-Net baseline. For
lack of time, we don’t compare our approach with the score based diffusion
model. However, since the MC-DDPM showed superior performance over the
score based diffusion model, we compare our results, instead with MC-DDPM.

Figure 3: An example of reverse diffusion process for reconstruction

Figure 4: Sample Reconstruction results of ZF, U-NET, MC-DDPM for pd4x
and pd8x
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Figure 5: Sample Reconstruction results of ZF, U-NET, MC-DDPM for pdfs4x
and pdfs8x

Figure 6: Comparison of the reconstruction results of ZF, MC-DDPM , FAST
MC-DDPM, and VAR MC-DDPM for pd4x and pd8x.
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Table 1: Quantitative metrics. The first half of the table reports the results for
the pd case, and the second half for pdfs. "x4", and "x8" in the first column
denote the acceleration factor. Numbers in red indicate the best metric out of
all the methods. Numbers in bold face indicate the second best metric out of all
the methods i.e. the MC-DDPM, however, the FAST MC-DDPM performance
is comparable with just 200 steps.

6.2 Discussion
It is very common in medical imaging that the measurement is under sampled
to reduce the cost or dosage. Therefore, it is important to define the condi-
tional diffusion process in the measurement space for a reconstruction task. In
this, project, we reporduce the pipleine of MC-DDPM, and propose two novel
variants, specifically FAST MC-DDPM and VAR MC-DDPM. However, due to
lack of compute and storage, we report our experimental results on a single
volume of pd4x,pd8x,pdfs4x and pdfs8x of knee single-coil mri data obtained
from fstMRI.

7 Conclusion
In this project we present fast and learnable noise-schedule variants of the MC-
DDPM or medical image reconstruction using under-sampled measurements.
Our method applies diffusion process in measurement domain with conditioned
under-sampling mask with faster sampling speed, improved training, and en-
hanced quanity of synthesis. We obtain comparable performance to that at-
tained by MC-DDPM using our much faster FAST MC-DDPM variant with the
only difference being replacing DDPM with Denoising Diffusion Implic Model
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proposed in [Song et al. 2021]. Moreover, we are able to attain superior perfor-
mance with out VAR MC-DDPM variant which learns the the variance schedule
{βt} effectively - which is an important hyperparameter related to the sampling
quality and efficiency, as shown in [Kerras et al., 2022]. We wish to follow up this
study with the following future steps: (i) verifying the improvements of FAST
MC-DDPM & VAR MC-DDPM on all the 6 volumes tested in the MC-DDPM
paper, (ii) checking if integration of FAST and VAR is possible. (iii)checking
if adaptive diffusion without conditioned on image prior yields better results
than conditional, and finally (iv) exploring scheduling between conditional and
unconditional DDPM.
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Thanks Dr. Dan for your guidance and immense support throughout the project.
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