
1
TinyML has a Security Problem - An Adversarial Perturbation Perspective

Swapnil Sayan Saha (605353215), Khushbu Pahwa (805498854), Basheer Ammar (705471708)

Motivation: Recent advancements in machine learning have opened a new opportunity to bring intelligence to
low-end Internet-of-Things nodes for making complex and time-critical inferences from unstructured data. Dubbed
TinyML, the advancements include model compression, lightweight machine-learning blocks, AutoML frameworks,
and software suites designed to perform ultra-low-power, always-on, and onboard sensor data analytics on
resource-constrained platforms [1].

Problem: The first-generation TinyML workflow does not include attack surface analysis and tools to defend the
inference pipeline against attacks at various layers in the cyber-physical system. Moreover, the security cost of using
“lightweight by design” models on embedded hardware against adversarial attacks has not been explored [1].

Contributions: Our contributions are two-fold:
● We perform two well-known adversarial attacks on 10 state-of-the-art TinyML models and 13 state-of-the-art

large neural networks across three applications. We show that TinyML models are less robust to adversarial
perturbations than large models.

● We propose an efficient neural architecture search (NAS) framework to yield models that have both high
utility and adversarial accuracy within the target platform bounds while adding negligible search and training
costs in the TinyML workflow.

While solutions for certifiable adversarial robustness are well studied in the machine learning community [2-7], our
focus is on providing a starting point to make the recent advancements in TinyML more backward compatible and
functionally equivalent (high fidelity) to upstream models without adding significant training and compute overhead.

Related Work:
● Prior work has shown that compressed models are prone to adversarial attacks and false data injection with

a higher success rate than larger models [8-12]. However, these works focus only on derivative models and
not models lightweight by design.

● Current methods of automatic exploration of adversarially robust models using NAS include limiting the
network Lipschitz constant [8] and performing additional adversarial training steps [13]. The former is
challenging to quantify for complex and non-neural models, while the latter adds significant search and
training costs.

Attack Model: The TinyML model is assumed to run on an embedded platform, making inferences in real-time from
observed sensor data. The goal of the adversary is to perturb the observed sensor data passively and covertly to
cause the model to provide erroneous outputs without alerting the client. For image recognition, audio keyword
spotting, and wearable human activity recognition, such undetectable perturbations can be injected via adversarial
patches or pixel patterns [14-15], inaudible ultrasonic injection or laser injection or background audio [16-18], and
spoofing or acoustic attacks [19]. The adversary neither knows anything about the model architectural encodings or
parameter values (white-box) nor can query the model (black-box). The adversary knows about the input
representation and the output. Regardless of an unprivileged adversary, adversarial perturbations have been shown
to be universal [20] and transferable across domains [21-22]. While side-channel attacks are widespread in the
embedded domain [23], we do not consider these attacks in this project.

Results of Adversarial Perturbations: To quantitatively highlight the utility-adversarial accuracy gap between large
models and TinyML models, we perform two white-box adversarial attacks:

● Fast Gradient Sign Method (FGSM) [24]: Maximizes the value of a loss function of a model by
producing an adversarial input based on the sign of the gradients of that loss function with respect to the
original input and label . controls the perturbation strength.

● Projected Gradient Descent (PGD) [25]: Iterative or multi-step variant of FGSM. and control the
perturbation strength.

We use adversarial accuracy as a metric to measure adversarial robustness:

Table 1 highlights the properties of the chosen state-of-the-art large and TinyML models across three multiclass
classification applications, namely image recognition (CIFAR-10 dataset [26]), audio keyword spotting (Google
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Speech Commands dataset [27]), and wearable human activity detection (AURITUS dataset [28]). The first two
applications are present in the MLPerf Tiny v0.5 Inference Benchmark [29].

Table 1: Characteristics of candidate models for adversarial robustness test.

Application Model Type Model Test Accuracy (%) Parameters (M) Features NAS@ Transfer Learning

Image
Recognition

Large EfficientNetB0 [30] 93.2 4.07 ✗ ✓ ✓*

EfficientNetB4 [30] 93.5 17.70 ✗ ✓ ✓*

EfficientNetv2B0 [31] 96.7 5.93 ✗ ✓ ✓*

EfficientNetv2B3 [31] 97.0 12.95 ✗ ✓ ✓*

ResNet50 [32] 89.7 23.62 ✗ ✗ ✓*

VGG19 [33] 92.3 20.03 ✗ ✗ ✓*

TinyML ResNet8 [29] 87.1 0.079 ✗ ✗ ✗

MCUNet DS-CNN (320-1)` [34] 87.7 0.57 ✗ ✓ ✓*

MCUNet DS-CNN (256-1)` [34] 87.5 0.56 ✗ ✓ ✓*

Audio
Keyword
Spotting

Large Attention RNN [35] 93.9 1.29 ✓^ ✗ ✗

CNN [36] 82.4 0.095 ✓^ ✗ ✗

GRU [36] 92.2 0.50 ✓^ ✗ ✗

LSTM [36] 92.9 1.03 ✓^ ✗ ✗

TinyML DS-CNN [29] 92.2 0.025 ✓^ ✗ ✗

TCN [37][38] 76.0 0.019 ✓^ ✗ ✗

Human
Activity
Recognition

Large CNN-LSTM [39] 99.7 1.74 ✗ ✗ ✗

CNN [39] 99.0 3.03 ✗ ✗ ✗

LSTM [39] 97.3 0.20 ✗ ✗ ✗

TinyML Bonsai [40] 72.6 0.00063 ✓ ✗ ✗

ProtoNN [41] 72.0 0.00062 ✓ ✗ ✗

TCN [37][38] 93.0 0.00106 ✗ ✗ ✗

FastRNN [42] 95.0 0.00015 ✗ ✗ ✗

FastGRNN [42] 98.6 0.00030 ✗ ✗ ✗

* Transfer learning from ImageNet-1000 to CIFAR-10; ^ Operates on log-Mel spectrograms; @ Optimized via AutoML frameworks; ` Models targeted
towards two different microcontrollers.

Figure 1 shows the effects of increased perturbation strength on adversarial accuracy on all models. From Figure 1(g)
and 1(h), we can see that overall, TinyML models are 4.4% - 11.4% and 1.0% - 10.9% less robust in terms of
adversarial accuracy over large models for FGSM and PGD attacks, respectively. In addition, we also observe:

● TinyML Models which operate on raw sensor data are more likely to be less robust to input perturbations
than TinyML models operating on features.

● Models generated by NAS are more sensitive to small perturbations compared to human-engineered models
(also observed in [13][43]). This is probably due to high loss smoothness and low gradient variance in the
loss contour of NAS-generated models [43].

● TinyML models that have used transfer learning to operate in the new domain are less robust to adversarial
perturbations for small changes in the new domain over TinyML models trained from scratch in that domain.

● While there is no significant correlation between model size and adversarial accuracy across different
applications, for the same application, on average, TinyML models are less robust than large models.

● Models with high utility (test accuracy) are more likely to be sensitive to small adversarial perturbations over
models with low utility, probably due to overfitting.
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Figure 1: Summary of results of adversarial perturbation. (a-f) show the effect of increasing adversarial perturbation
strength on the adversarial accuracy of the candidate models for FGSM and PGD attacks. B represents big models,
while S represents TinyML models. (g) and (h) shows the global effect on big and TinyML models of increasing
adversarial perturbation. (i) shows the effect of parameter count on mean adversarial accuracy for all models.

Results of Robust and Efficient NAS: For automatic generation of TinyML models robust to adversarial
perturbations, we propose a model and data-agnostic NAS with an adversarial accuracy cost parameter, which has
negligible additional training and search time. We developed a gradient-free, platform-in-the-loop, and Bayesian NAS
framework that acts as a black-box optimizer, based on state-of-the-art Bayesian optimizer ARM Mango [44]. The
search space consists of neural network weights , hyperparameters , network structure denoted as a directed
acyclic graph (DAG) with edges and vertices representing activation maps and common ML operations
(e.g., convolution, batch normalization, pooling, etc.) respectively, which act on . The goal is to find a neural
network that maximizes the hardware SRAM and flash usage within the device capabilities while minimizing latency
and validation RMSE, and maximizing adversarial accuracy on the validation set.
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Firstly, validation RMSE serves as a proxy for the error characteristics of the model candidate. Secondly,
when real hardware is absent, we use the size of the flatbuffer model schema [45] as a proxy for flash usage.
Thirdly, we use the standard RAM usage model as a proxy for SRAM usage , with intermediate layer-wise
activation maps and tensors being stored in SRAM [46]. Fourth, since model latency is linearly proportional to the
FLOPS count for a variety of convolutional models for microcontrollers, we use FLOPS as a proxy for runtime latency

[47]. When HIL is available, we obtain the SRAM, flash, and latency parameters directly from the target
compiler and real-time operating system (RTOS). All hardware parameters are normalized by device capacity or
target metrics. Lastly, to get adversarial accuracy with negligible training or search cost, we perform FGSM attack on
the trained candidate model on the validation set.

We use Gaussian process as the surrogate model to approximate , which allows priors on the distribution of
moments to propagate forward as the search progresses. In addition, the domain of random scalarizations can be
specified by the user to guide the parallel search acquisition functions (hallucination or K-means clustering) into the
promising Pareto-optimal regions of the gradient plane. The acquisition function decides the next set of to sample
from the design space using Monte Carlo sampling with Upper-Confidence Bounds, which balances exploration and
exploitation.

Table 2 showcases the results of applying our platform-aware robust NAS to optimize models for different hardware
and model size. On average, the NAS formulation with adversarial robustness term yields models that have, on
average, 9% more adversarial accuracy than handcrafted models and models found via NAS with no adversarial
robustness cost. While the robust models are also larger than the non-robust models found via NAS, the models still
fit within the memory bounds of the target device.

Table 2: Comparison of handcrafted models, models found via NAS without adversarial robustness cost, and models
found via NAS with adversarial robustness cost.

Model Test Accuracy (%) Adversarial Accuracy Model Size (kB) FLOPS (M)

TCN (STM32F746ZG*, handcrafted) 93 18 68.8 12.57

TCN (NAS, STM32F746ZG, no adversarial term) 90 20 44.4 8.52

TCN (NAS, STM32F746ZG, with adversarial term) 97 44 101.4 23.2

TCN (NAS, STM32F446RE*, no adversarial term) 93 14 54.93 8.79

TCN (NAS, STM32F446RE, with adversarial term) 93 27 68.95 15.87

TCN (NAS, STM32L476RG*, no adversarial term) 90 14.3 38.7 5.37

TCN (NAS, STM32L476RG, with adversarial term) 95 36.3 96.97 21.57

ProtoNN (handcrafted) 72 78 27.8 -

ProtoNN (NAS, no adversarial term) 71 72 1.16 -

ProtoNN (NAS, with adversarial term) 70 76 20.4 -

Bonsai (handcrafted) 73 19.6 14.9 -

Bonsai (NAS, no adversarial term) 71 18.6 1.5 -

Bonsai (NAS, with adversarial term) 72 20.6 1.5 -

* Cortex M4 boards -  STM32F746ZG: 320kB RAM, 1 MB flash; STM32F446RE: 192 kB RAM, 512 kB flash, STM32L476RG: 128 kB RAM, 1 MB flash

Conclusion: We showcased that TinyML models have a security problem from an adversarial perturbation
perspective, and provided an inexpensive AutoML solution to provide robust models within tight resource constraints
of TinyML devices. The code is open-sourced at https://github.com/swapnilsayansaha/tinyml_security
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