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Abstract

In this project, we build a Machine Learning model for

a Brain-Computer Interface(BCI) system to classify Brain

activity from EEG signals. We use the BCI Competition IV

2a dataset [3] recorded from nine subjects who performed

four Motor Imagery(MI) tasks. We check the viability of

using a model on a subject that was trained on a different

set of subjects. We also discuss building individual mod-

els optimized for each subject. Three main architectures

have been explored and compared in detail, namely Convo-

lutional Neural Networks, a hybrid Convolutional Neural

Network - Long Short Time Memory (CNN-LSTM ) model,

and SkipNet architecture that leverages anchored-STFT and

an adversarial data augmentation scheme called ‘Fast Gra-

dient Sign Method’ (FGSM). We achieved 70% accuracy

using the CNN model, 71% accuracy using the CNN-LSTM

model, and 76% accuracy using the SkipNet model.

1. Introduction
In this part of the report, we will lay out the motivation

for the choice of architectures for the classification of the
EEG 2a four class Motor Imagery Dataset in section 1.1,
1.2 and 1.3. We will also discuss the pre-processing and
data-augmentation strategies employed in this project for
the different architectures that led to performance boost.

1.1. Motivation for architectures and Comparison
1.1.1 CNN

We observe from the exploratory data analysis conducted on
the EEG dataset that there is high correlation between adja-
cent time steps and the EEG features across the 22 channels
are also correlated. Since Convolutional Neural Networks
are developed from the idea that neighborhood pixels are
highly correlated - using the notion of kernels or filters or
feature maps, CNN becomes an obvious choice of model
architecture to establish the base - line for the Motor Im-
agery Classification Task [5] as it is a good feature extractor

to capture the relevant across time steps and channels. The
initial layers attempt to reduce the time dimensions whereas
the latter layers attempt to reduce the feature dimensions.

We use a 4 block CNN architecture followed by a dense
layer with softmax activation. Each CNN block comprises
Conv2D layer with ELU activation , which is followed by
MaxPooling2D layer to perform the max pooling operation
over the kernels. This is then followed by Batch Normaliza-
tion which is added to add regularization and to make the
model more robust to weight initialization. The last layer of
each CNN block is the Dropout layer to prevent the model
from overfitting. The architecture is shown in Figure 1 and
explained in detail in the Methods Section of the report.

Figure 1. CNN Model Architecture

1.1.2 CNN - LSTM

The motivation for a hybrid CNN - LSTM model is to com-
bine the excellent feature extraction capabilities of the CNN
model with the temporal component extraction capabilities
of the LSTM model. LSTM is a variant of the Recurrent
Neural Network architecture that overcomes the limitations
of RNN - namely vanishing gradient.While a CNN alone
can also extract information to some extent from a feature
set with time series data, the LSTM is far better suited for
long temporal sequences.

Our CNN-LSTM architecture consists of the same 4-
CNN blocks as used in the above section. We retained the
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same model configurations for the CNN part of the hybrid
architecture because we attained high test accuracy 70% by
employing the model architecture used in the previous sec-
tion. These 4 CNN blocks are then followed by a TimeDis-
tributed(Flatten()) layer and a Dense() layer to make the
output of the CNN blocks compatible with the desired in-
put shape of the LSTM layer. This is then followed by the
LSTM layer, and finally there is a Dense Layer consisting
of 4 neurons (for the 4 tasks / classes) with softmax acti-
vation function. For each CNN block in the CNN - LSTM
architecture, we tune the number of filters, kernel size and
activation function for each Conv2D layer. For the Max-
Pooling2D layer, we tune the pool size. For the Dropout
layer, we tune the keep prob factor or the amount of dropout.
For the LSTM block , we tune the no of lstm layers, the
no of units in each lstm layer, in addition to optimizing for
the dropout and recurrent-dropout in each layer. The archi-
tecture is shown in Figure 2 and detailed in the Methods
Section of the report.

Figure 2. Hybrid CNN-LSTM Model Architecture

1.1.3 SkipNet

While both of the models discussed so far would work well,
they don’t make use of any domain knowledge about EEG
signals or Signal Processing in general at all to make the
model simpler. To combat this, we took inspiration from the
paper [1] , that performs signal processing on EEG signals
to generate spectrograms that can then be fed into CNN like
architectures.

The Skip-Net comprises two convolutional layers. The
first convolutional layer uses filters that convolve on the
time axis and extracts frequency domain features along the
time axis. In a similar fashion, the second convolutional
layer extracts the time-domain features. Additive skip con-
nection is used to combine the extracted frequency and
time domain features to prevent the loss of any informa-
tion which in turn improves the classification performance
of the Skip-Net compared to other classifiers. The pro-
posed model contains significantly less trainable parameters
as compared to its counterparts proposed and thus reduces
the risk of overfitting. The architecture is shown in Figure

3 and is explained in detail in the Methods Section of the
report.

Figure 3. SkipNet Model Architecture

1.2. Preprocessing and Data Augmentation
We observed that most of the variation in the EEG data

is constrained in the first 500 time samples. This can be
clearly seen by plotting the average EEG signal across all
the channels for each of the 4 classes. And this observa-
tion was further verified by training and evaluating the CNN
model on different trimmed lengths of the samples, varying
from 100 to 1000 samples. [6, 2]

Figure 4. Avg EEG Signals Figure 5. Accuracy vs Trim Size

1.2.1 CNN and CNN - LSTM

The experimentation phase involved rigorous hyperparame-
ter tuning for the different architectures- exploring and im-
plementing different preprocessing strategies like noise ad-
dition, smoothing by averaging, sub-sampling across time-
axis, max-pooling, filtering, continuous-wavelet transform,
and adversarial based augmentation strategies. We use sim-
ilar pre-processing and data augmentation strategies to eval-
uate the CNN and CNN-LSTM models.

1.2.2 SkipNet

For the SkipNet architecture, the preprocessing is done us-
ing anchored STFT(explained in the model architecture sec-



Figure 6. Data Preprocessing for CNN and CNN-LSTM models

tion), and data augmentation is done using adversarial at-
tacks, in order to imitate the state-of-the-art model perfor-
mance attained by the authors in the paper, for our specific
subset 2a of the BCI MI EEG dataset. This SkipNet model
architecture, and the associated pre-processing techniques
are obtained from the paper [1] , and we attempted to em-
ploy the strategies proposed in the paper for the 2a subset of
the EEG Motor Imagery Task of BCI competition. The key
enablers of this paper are the anchored-STFT and the adver-
sarial and generative model-based data augmentation strate-
gies. Conventional STFT uses a fixed-length window for
mapping time domain signal into frequency domain, result-
ing in a trade-off between temporal and spectral resolution
which is critical for feature extraction. Thus, the paper pro-
posed an extension of short time Fourier Transform (STFT)
that uses multiple windows of variable sizes for the transfor-
mation, called anchored-STFT.The use of anchored-STFT
enables better feature extraction. Figures 7 and 8 show the
transformation of an EEG signal from a time series to a
spectral image using this anchored STFT approach which
is then fed to the model for classification.

Figure 7. Original EEG Signal Figure 8. Spectral Image

Secondly, they proposed generative model-based data
augmentation methods called Gradient Norm adversar-
ial augmentation (GNAA) and FGSM(Fast Gradient Sign
Method) in order to enhance the robustness - since obtain-
ing large, labeled data sets is still a challenge in training
deep learning models for BCI applications. These are ad-
versarial attacks, FGSM employs the sign of the gradient
weighted by a factor called epsilon, and GNAA the gradient
norm. Figure 9 shows an adversarial generated spectral im-
age on a correctly classified training sample, which is then
verified to be wrongly predicted by the model. This is then

used to re-train the model to achieve better validation and
test accuracy.

Figure 9. Data Augmentation for SkipNet model

2. Results
SkipNet architecture from the paper [1] outperformed

CNN-LSTM and CNN architectures, thus demonstrating
that even shallow CNN architecture with few trainable
parameters can enhance the classification accuracy.This
model’s performance is followed by CNN-LSTM architec-
ture which does well on all subjects models but does not
generalize well for individual subjects. The CNN model
also attains high accuracy but again suffers from overfitting
and has poor generalization on datasets with different data
distributions.

Model Test Accuracy
CNN 70.03%

CNN+LSTM 71.11%
SkipNet 75.95%

3. Discussion
With preprocessing and data augmentation pipeline

as demonstrated in Fig 6, both CNN and CNN-LSTM
achieved significant performance boost.

For SkipNet architecture, we observed that enhancement
in the decoding capabilities of the EEG signals is brought
about by its novel preprocessing and data augmentation
techniques involving the use of anchored STFTs and the
adversarial data augmentation achieved through FGSM and
GNAA attacks.This technique works well for different data
distributions, as is evident from Table IV (in Methods).

We inferred that even a shallow CNN architecture with
low computational overhead as used in SkipNet can attain
high performance, while eliminating the problem of overfit-
ting.

We inferred that the model optimized for all subjects
when re-trained and evaluated on individual subjects, did
not generalize well.

When we optimized and trained the model for subject 1,
and evaluated for other subjects, we did not attain the same
performance level on all subjects, thus, we seek to develop
subject-independent / caliberation-free models using tech-
nqiues like common spatial pattern (CSP), common spa-
tiospectral pattern (CSSP), filter bank CSP (FBCSP), and
Bayesian spatio-spectral filter optimization (BSSFO).[4].
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Methods and Supplementary Materials

I. MODEL ARCHITECTURES AND EXPERIMENTS

In this section, we describe the exact architecture used for each of the models along with the intuition and reasoning behind
picking each of the hyperparameters in the model.

A. CNN
The first model we used is a Convolutional Neural Network with 4 convolutional layers stacked before a single dense layer

for the final classification task. We added MaxPooling after each convolution along with BatchNormalization and Dropout for
regularization. The model takes input of shape (Nt ⇥ 1 ⇥Nc) where Nt is the length of a single EEG signal, and Nc is the
number of channels/electrodes. Its parameters for each layer are described in Table I.

Idx Layer Name Num Filters Size Padding Activation
1 Convolutional Layer 25 10 x 1 ’same’ ELU
2 MaxPool Layer - 3 x 1 ’same’ -
3 Batch Normalization
4 Dropout (0.5)
5 Convolutional Layer 50 10 x 1 ’same’ ELU
6 MaxPool Layer - 3 x 1 ’same’ -
7 Batch Normalization
8 Dropout (0.5)
9 Convolutional Layer 100 10 x 1 ’same’ ELU

10 MaxPool Layer - 3 x 1 ’same’ -
11 Batch Normalization
12 Dropout (0.5)
13 Convolutional Layer 200 10 x 1 ’same’ ELU
14 MaxPool Layer - 3 x 1 ’same’ -
15 Batch Normalization
16 Dropout (0.5)
17 Flatten
18 Dense with 4 Neurons Softmax

TABLE I: CNN Model Architecture

1) Experiments and Hyperparameter Tuning::

a) Activation: We used the ELU activation in all the convolutional layers because it has all the advantages of a RELU
unit but is faster than the RELU in convergence (despite it being slower to compute ELU). This gives a better generalization
using the ELU and given that we have limited dataset which makes us prone to overfit, ELU was a better choice for activations.

b) Learning Rate: We tried different fixed learning rates between 10�1 to 10�4 with different multiplication factors and
found that 10�3 worked the best.

c) Depth of the CNN (number of stacked CNN layers): We experimented with various stacked convolutional layers ranging
from 1 to 6 layers and found that 4 layers gave the best validation performance than others. Lesser layers than this gave worse
training accuracy due to underfitting while more than 4 showed worse validation accuracy due to overfitting.

d) Regularization: We chose a Dropout of 0.5 to reduce the amount of overfitting. We found that a lower value than 0.4
showed worse generalization performance while values more than 0.6 caused underfitting.

B. CNN - LSTM
To better utilize the long term dependency inside the EEG signals, we wanted to add a Recurrent Neural Network which

are best suited for handling a time series data. We experimented with using two forms of RNN – LSTM and GRU. Since we
already had an optimized model architecture of CNN, we proceeded with adding the RNN just after the CNN layers. Both
LSTM and GRU showed similar initial results, so we went ahead with optimizing just the LSTM for this report. We used 20
LSTM units after the CNN layers, and introduced a fully connected dense layer in between. This FC Dense layer helped learn
a better linear mapping between the feature maps generated by the CNN layers and the LSTM modules. The architecture of
this CNN-LSTM model is described in Table II.
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Idx Layer - Parameters
1 CNN layers (same as in Model 1)
2 Flatten - Dense Layer with 100 neurons - Activation: None(Linear)
3 Reshape - LSTM with 20 units - Dropout 0.6 and Recurrent Dropout 0.1
4 Dense with 4 neurons - Activation: Softmax

TABLE II: CNN-LSTM Model Architecture

1) Experiments and Hyperparameter Tuning::

a) Learning Rate: We tried different fixed learning rates between 10�1 to 10�4 with different multiplication factors and
found that 5 ⇤ 10�4 worked the best.

b) Dense Layer with 100 neurons: We saw that having this fully connected layer between the CNN and LSTM showed
better train and validation performance. We tried having multiple such layers and different numbers of neurons with different
activations, but anything other than a simple dense layer led to overfitting and worse generalization.

c) LSTM: We started with 10 units of LSTM and were already able to see a minor improvement in performance over
the CNN-only model. We saw an even better improvement in performance when we increased to 20 units of LSTM. We
experimented with more stacked layers of LSTMs and even Bidirectional LSTMs, but they were all leading to more overfitting,
which seemed more and more difficult to regularize.

d) Regularization: In this model, we observed that removing the Dropout after some of the convolutional layers sometimes
gave a better performance. The intuition behind this could be that more information can be passed onto the LSTM layer with
lesser dropout.

e) Optimizer: We tried two different optimizers: Adam and RMSProp with different configurations and found Adam to
be marginally faster and more stable in attaining convergence.

C. SkipNet
In this model, we perform a preprocessing to each EEG signal (trimmed to the first 500 samples) using an anchored STFT

approach. We perform STFT using 5 window lengths - [16, 32, 64, 128, 256] and a fixed stride of 8 to get 5 spectral images
for each signal. We then extract the spectrum data from 2 frequency bands (which have been discussed in the Reference
paper of this model to be containing the most information) namely mu band (4-15Hz) and beta band (19-30Hz). We then
concatenate images generated from different electrodes with the same anchor length into a single image. Thus, we end up
with 5 image samples per subject’s EEG recordings from all the electrodes. We apply max voting on this batch of 5 samples
to decide the final estimated class during test time. These train samples are then fed to the model for training, after which
we generate adversarial samples that look visually similar to the correctly classified training samples but is wrongly classified
by the existing model. The visualization of this step is shown in the main report where an adversarial image is shown to be
the additive sum of a training image and generated noise. The model is retrained using these newly generated samples which
is found to further improve the performance by at least 1% additionally. The architecture of the SkipNet model is shown in
Table III.

Idx Layer - Parameters
0 Spectrogram Generation from EEG Signal
1 Convolutional Layer 16 filters Size: 22*44 x 1 ‘Valid’ padding RELU act.
2 Batch Normalization
3 Convolutional Layer 16 filters Size: 22*44 x 1 ‘Valid’ padding RELU act.
4 Batch Normalization
5 Additive Layer : CNN1 (layer 2) activation + CNN2 (layer) 4 activation
6 Fully Connected Dense Layer - 128 neurons - RELU activation
7 Dense Layer with 4 neurons - Softmax activation

TABLE III: Skipnet Model Architecture

II. PERFORMANCE OF EACH MODEL ON EACH DATASET

A. Different Models trained and evaluated on all subjects
We saw the best performance from the SkipNet model which gave a test accuracy of 75.95%. We noticed that both LSTM

and GRU initially gave similar performance trends, so we optimized just the LSTM model’s hyperparameters which is why it
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showed much better performance than the CNN+GRU model in the Table below. We also observed that using a bidirectional
LSTM caused overfitting which proved difficult to regularize. The accuracies obtained for each model are listed in Table IV.

Model Test Accuracy (after max voting )
CNN only 70.03%

CNN + LSTM 71.11%
Skipnet 75.95%

CNN + GRU 65.46%
CNN + Bidirectional LSTM 65.24%

TABLE IV: Different Models Trained and Evaluated on All Subjects

B. Best 2 Models trained on all subjects, evaluated on each individual subject
We used the best 2 models - the CNN+LSTM model and the SkipNet model - pretrained on all the subjects combined and

observed their performance on each subject individually. The accuracies seem to be distributed across each subject evenly
which means that both the models perform well on each of the subjects. The accuracies are listed in Table V.

Model Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9
CNN-LSTM 67.50% 64.99% 75.99% 72.50% 76.06% 65.31% 77.50% 70.50% 69.68%
SkipNet 72.1% 70.56% 79.31% 80.5% 77.28% 69.31% 83.06% 77.25% 72.37%

TABLE V: Best 2 Models Trained on All Subjects and Evaluated on Individual Subjects

C. Best 2 Models (optimized on all subjects together) trained and evaluated on each individual subject
We then trained the CNN+LSTM model and the SkipNet model - on each subject individually and evaluated them on that

same subject to see how well the same model would perform if it was trained on one subject only and evaluated on the same
subject. It can be observed from the results in Table VI that the CNN-LSTM model struggled to perform well with most of
the subjects, while the SkipNet model is able to train efficiently and show better performance on each subject. This shows that
the SkipNet model generalizes very well without needing to individually optimize it for any subject. This could be intuitively
reasoned with the simplicity of the model as well as the augmented sample generation of this model that makes SkipNet learn
efficiently even for lesser number of training samples. This could mean that the preprocessing (spectral image using STFT)
done on the EEG signals in SkipNet helps the model become calibration free and subject agnostic.

Model Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9
CNN-LSTM 50.0% 46.0% 42.0% 56.0% 76.61% 40.81% 70.0% 42.0% 68.08%
SkipNet 67.3% 70.18% 67.55% 62% 69.4% 63.33% 72.97% 68.81% 61.32%

TABLE VI: Best 2 Models Trained and Evaluated on Individual Subjects

D. CNN - LSTM Model (optimized on subject 1) trained and evaluated on each individual subject
Since the CNN+LSTM model that was optimized on all the subjects together did not generalize well when we trained and

tested it on individual subjects, we had to optimize the CNN+LSTM model further individually for subject 1, and re-trained
and evaluated the model on each individual subject. The accuracies are listed in Table VII. While optimizing for subject 1,

Model Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9
CNN-LSTM 72.11% 48.76% 51.23% 59.9% 74.1% 42.06% 70.64% 43.71% 71.31%

TABLE VII: CNN-LSTM Model Optimized for Subject 1, Trained and Evaluated on Individual Subjects

we had to modify the architecture in terms of some of the modules and their hyperparameters. In the modified architecture,
the number of filters in the CNN layers was changed to 16, 32, 64 and 128. The padding was changed from ’same’ to ’valid’
and an L2 regularixation of 0.01 was added to each layer. The kernel size of the second layer was changed to 21⇥ 1. Dropout
was removed from all the layers and only added as 0.4 at the last layer. The single LSTM layer was changed to stacked
bidirectional LSTM layers with 128, 64 and 32 LSTM units.

It can be seen that the CNN-LSTM model that was optimized on subject 1 performed well on that subject, but could not
show consistant performance on other subjects using the same model. This shows that the CNN-LSTM model will need to be
optimized or trained for every new subject. This reason, along with the overall better accuracy of the SkipNet model makes
the SkipNet a better choice for EEG signals classification task.


